IV B.Tech - I Semester – Regular / Supplementary Examinations OCTOBER 2024

POWER PLANT ENGINEERING (MECHANICAL ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks		
UNIT-I							
1	a)	Why the draught is required in the steam power plants? Explain the different methods to achieve the required draught.	L3	CO1	7 M		
	b)	Explain the principle of operation of Steam Power Plant with the suitable layout.	L2	CO2	7 M		
		OR					
2	a)	What is the mechanism adopted for the rejection of heat from the condenser of a steam power plant? Explain their importance.	L3	CO1	7 M		
	b)	How to classify the coals in India based on their ash content?	L2	CO2	7 M		

Max. Marks: 70

		UNIT-II			
3	a)	Explain the working of super charging in an	L2	CO1	7 M
		internal combustion engine with T-s			
		diagrams.			
	b)	Explain the principle of operation of	L2	CO2	7 M
		combined cycle power generation system			
		and compare it with the stand alone power			
		generation units.			
		OR			
4	a)	Explain the closed cycle gas turbine used in	L2	CO1	7 M
		the power plants.			
	b)	What are different auxiliary components	L2	CO2	7 M
		required for the gas turbine power plants?			
		Explain them with suitable applications.			
		UNIT-III			
5	a)	What are typical ponds and storage units	L3	CO1	7 M
		suitable for installation of hydro electric			
		power plants? Explain them.			
	b)	What is the importance of spill ways in	L2	CO2	7 M
		hydro electric power projects? Explain their			
		practical applications.			
			1.0		7) (
6	a)	What are different fertile materials used for	L2	CO1	7 M
		nuclear power generation?			

	b)	Describe the principle of operation of	L2	CO2	7 M
		sodium Graphite reactor used for the nuclear			
		power generation with neat sketch.			
	I				
		UNIT-IV		1 1	
7	a)	Write about Coordination of hydro electric	L3	CO1	7 M
		and gas turbine power stations.			
	b)	Discuss about coordination of hydroelectric	L2	CO3	7 M
		and Nuclear power stations.			
		OR	<u> </u>		
8	a)	What is the Importance of measurement and	L4	CO1	7 M
		instrumentation in power plants? How water			
		purity is measured?			
	b)	How Gas analysis is done in power plants?	L3	CO3	7 M
		How measurement of smoke and dust are			
		done?			
		UNIT-V			
9	a)	Explain Load curve and Load duration	L3	CO1	7 M
		curve with a neat sketch.			
	b)	List out emissions from Thermal Power	L2	CO3	7 M
		plant. Explain how Nox emissions can be			
		reduced from Flue gasses.			
	1	OR		11	
10	a)	What is the impact on the environment and	L3	CO1	7 M
		human health for the effluents released from			
		the thermal power plants? Explain how to			
		control them.			

b)	The yearly duration curve of a certain plant L4 CO3 7 M	
	can be considered as a straight line from	
	20 MW to 3 MW. To meet this load, three	
	turbine generator units, two rated at 10 MW	
	each and one at 5 MW are installed.	
	Determine	
	i) Installed capacity	
	ii) Plant factor	
	iii) Maximum demand	
	iv) Load factor and	
	v) Utilisation factor.	